Improving the Robustness of Electromyogram-Pattern Recognition for Prosthetic Control by a Postprocessing Strategy

نویسندگان

  • Xu Zhang
  • Xiangxin Li
  • Oluwarotimi Williams Samuel
  • Zhen Huang
  • Peng Fang
  • Guanglin Li
چکیده

Electromyogram (EMG) contains rich information for motion decoding. As one of its major applications, EMG-pattern recognition (PR)-based control of prostheses has been proposed and investigated in the field of rehabilitation robotics for decades. These prostheses can offer a higher level of dexterity compared to the commercially available ones. However, limited progress has been made toward clinical application of EMG-PR-based prostheses, due to their unsatisfactory robustness against various interferences during daily use. These interferences may lead to misclassifications of motion intentions, which damage the control performance of EMG-PR-based prostheses. A number of studies have applied methods that undergo a postprocessing stage to determine the current motion outputs, based on previous outputs or other information, which have proved effective in reducing erroneous outputs. In this study, we proposed a postprocessing strategy that locks the outputs during the constant contraction to block out occasional misclassifications, upon detecting the motion onset using a threshold. The strategy was investigated using three different motion onset detectors, namely mean absolute value, Teager-Kaiser energy operator, or mechanomyogram (MMG). Our results indicate that the proposed strategy could suppress erroneous outputs, during rest and constant contractions in particular. In addition, with MMG as the motion onset detector, the strategy was found to produce the most significant improvement in the performance, reducing the total errors up to around 50% (from 22.9 to 11.5%) in comparison to the original classification output in the online test, and it is the most robust against threshold value changes. We speculate that motion onset detectors that are both smooth and responsive would further enhance the efficacy of the proposed postprocessing strategy, which would facilitate the clinical application of EMG-PR-based prosthetic control.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM

This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...

متن کامل

An Intelligent Control Strategy in a Parallel Hybrid Vehicle

This paper presents a design procedure for an adaptive power management control strategy based on a driving cycle recognition algorithm. The design goal of the control strategy is to minimize fuel consumption and engine-out NOx, HC and CO emissions on a set of diversified driving schedules. Seven facility-specific drive cycles are considered to represent different driving scenarios. For each fa...

متن کامل

A Novel Percutaneous Electrode Implant for Improving Robustness in Advanced Myoelectric Control

Despite several decades of research, electrically powered hand and arm prostheses are still controlled with very simple algorithms that process the surface electromyogram (EMG) of remnant muscles to achieve control of one prosthetic function at a time. More advanced machine learning methods have shown promising results under laboratory conditions. However, limited robustness has largely prevent...

متن کامل

Sliding Mode with Neural Network Regulator for DFIG Using Two-Level NPWM Strategy

This article presents a sliding mode control (SMC) with artificial neural network (ANN) regulator for the doubly fed induction generator (DFIG) using two-level neural pulse width modulation (NPWM) technique. The proposed control scheme of the DFIG-based wind turbine system (WTS) combines the advantages of SMC control and ANN regulator. The reaching conditions, robustness and stability of the sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017